skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Lin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 18, 2026
  2. Free, publicly-accessible full text available July 20, 2026
  3. Free, publicly-accessible full text available April 1, 2026
  4. Free, publicly-accessible full text available March 1, 2026
  5. Abstract The eastern tropical North Pacific oxygen deficient zone (ETNP‐ODZ) exhibits a distinct physical and biological environment compared to other oxygenated water columns, leading to a unique scenario of particulate organic matter (POM) production and vertical transport. To elucidate these biological pump processes, we present the first comparison of δ15N values of nitrate, phenylalanine (Phe), and glutamic acid (Glu) within two distinct size fractions of particles collected along a productivity gradient in the ETNP‐ODZ. Low δ15NPheand δ15NGluvalues in both particle pools at sites with prominent secondary chlorophyll maximum (SCM), compared to the ambient δ15N‐NO3, suggest the presence of recycled N‐utilizing primary producers distinct from those at the primary chlorophyll maximum and their contribution to export. We observed reduced15N enrichment of Phe in small particles and a narrower δ15NPhedisparity between the two particle size fractions compared to the results from oxic waters, likely due to slower heterotrophic microbial degradation of small particles. Unique δ15NPheand δ15NGlusignatures of particles were found at the lower oxycline, potentially attributable to chemoautotrophic production and zooplankton mediation. These findings underscore the need for further investigations targeting particles generated at the SCM, their subsequent alteration by zooplankton, and the new production by chemoautotrophs. This will allow for a better evaluation of the efficiency of the biological pump in the globally expanding ODZs under contemporary climate change. 
    more » « less
    Free, publicly-accessible full text available January 11, 2026
  6. Free, publicly-accessible full text available January 1, 2026
  7. There are various applications of Cyber-Physical systems (CPSs) that are life-critical where failure or malfunction can result in significant harm to human life, the environment, or substantial economic loss. Therefore, it is important to ensure their reliability, security, and robustness to the attacks. However, there is no widely used toolbox to simulate CPS and target security problems, especially the simulation of sensor attacks and defense strategies against them. In this work, we introduce our toolbox CPSim, a user-friendly simulation toolbox for security problems in CPS. CPSim aims to simulate common sensor attacks and countermeasures to these sensor attacks. We have implemented bias attacks, delay attacks, and replay attacks. Additionally, we have implemented various recovery-based methods against sensor attacks. The sensor attacks and recovery methods configurations can be customized with the given APIs. CPSim has built-in numerical simulators and various implemented benchmarks. Moreover, CPSim is compatible with other external simulators and can be deployed on a real testbed for control purposes.1 
    more » « less
  8. Free, publicly-accessible full text available December 1, 2025
  9. Fast and accurate assessment of skin mechanics holds great promise in diagnosing various epidermal diseases, yet substantial challenges remain in developing simple and wearable strategies for continuous monitoring. Here, we present a design concept, named active near-infrared spectroscopy patch (ANIRP) for continuously mapping skin mechanics. ANIRP addresses these challenges by integrating near-infrared (NIR) sensing with mechanical actuators, enabling rapid measurement (<1 s) of Young’s modulus, high spatial sensing density (~1 cm2), and high spatial sensitivity (<1 mm). Unlike conventional electromechanical sensors, NIR sensors precisely capture vibrational frequencies propagated from the actuators without needing ultraclose contact, enhancing wearing comfort. Demonstrated examples include ANIRPs for comprehensively moduli mapping of artificial tissues with varied mechanical properties emulating tumorous fibrosis. On-body validation of the ANIRP across skin locations confirms its practical utility for clinical monitoring of epidermal mechanics, promising considerable advancements in real-time, noninvasive skin diagnostics and continuous health monitoring. 
    more » « less
    Free, publicly-accessible full text available November 15, 2025